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The lattice approximation to a time-dependent Ginzburg-Landau equation is 
investigated in the presence of a small external field. The evolution law conser- 
ves the spin, but is not reversible. A nonlinear diffusion equation of divergence 
type is obtained in the hydrodynamic limit. The proof extends to certain 
stochastically perturbed Hamiltonian systems. 
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1. I N T R O D U C T I O N  

In the last 10 years the problem of giving a microscopic foundat ion to the 
hydrodynamic  behavior  of interacting particle systems has received a great 
deal of  interest. There is a fairly well developed theory in the case of lattice 
gases and related models; see the survey paper by De Masi et al. (1) and 
Lebowitz e ta l .  (2~ for more  recent results. The situation is different for 
systems with cont inuous trajectories. The most  fundamental  examples of 
this kind are the Hamil tonian  models of classical mechanics. While more  or 
less explicit calculations are available in the case of one-dimensional hard 
rods and harmonic  oscillators, (3~4t there is no method  to treat less 
degenerate situations. Stochastic models, on the other hand, allow for a 
more  complete discussion. It is therefore interesting to study them al though 
they describe only some particular features of  physical reality. 

The main purpose of this paper is to extend the results of ref. 5 to 
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Ginzburg Landau models with external field. Such phenomenological 
(quasimicroscopic) models are widely used in low-temperature physics; see 
refs. 6 and 7 for further references to the physics literature. Driven diffusive 
systems have been treated in the context of lattice gases. (8 1~) The methods 
developed here are applicable also to stochastically perturbed anharmonic 
systems. We present the methods in the simplest nontrivial cases; some 
possible extensions are discussed at the end of Sections 1-2 and 3. 

We start by describing the physical context of some simple 
microscopic dynamics [Eqs. (1.4) and (1.16) below]. See also ref. 12. 

We consider a one-dimensional lattice system of continuous spins. We 
think of the sites x e Z as being the center of a unit cell in R. To each site 
x e Z we associate a real-valued spin S(x)  which describes the density in 
the cell around x. Each cell is in thermal equilibrium but still small enough 
for the free energy V(S(x) )  to vary in space: 

H(s)= Y~ v(s(x)) (1.1) 
x ~ Z  

V is some real-valued convex function. We can define a chemical potential 

6H(S)  
= V ' (S(x) )  (1.2) m.~ = 6S(x)  

in every cell x e Z .  As usual a difference in potential between neigh- 
boring cells x + 1 and x gives rise to a current from x to x + 1 over a time 
interval dt 

djt(x) = �89 x - mx + ~) dt (1.3) 

To account for the inaccuracy of this (reduced) description, we introduce a 
random uncorrelated current dW(t ,  x)  associated to each bond {x, x + 1 }. 
W(t, x)  is a Wiener process and represents the random current flowing 
from site x to x + 1. Finally, we wish to add an a priori prescribed current 
eJ(S(x)) .  It represents the net current from x to x + 1 due to an external 
field, eJ is a real-valued function and should be considered as the product 
of a constant electric field and the conductivity, which depends on the local 
configuration. The coefficient 0 < 8 < 1 measures the strength of the electric 
field and will be thought of as being very small. 

The dynamics is governed by the equation expressing conservation of 
mean density in the presence of a source: 

dS,(x)  + div d~ ,(x) = - e  div J( S~(x) ) dt (1.4) 

with d i v f ( x ) = f ( x ) - f ( x - 1 )  for a scalar function f on Z, and 
dy,(x)  = dj,(x) + dW(t ,  x). The initial condition is specified by So(x) = ~(x), 
a given configuration of spins on the lattice Z. 
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We ask now how to obtain from these (stochastic) microscopic 
equations a macroscopic description of the process. It is clear that the main 
ingredient will be a rescaling of extensive quantities for which the hydro- 
dynamics is investigated. The procedure is called the hydrodynamic scaling 
limit. We have to rescale space and time using the small parameter e: 

t --* tie 2, x ~ x/~ (1.5) 

The rescaled density field S~(x) is defined on the lattice eZ by 

S~(x) = S,/,~(x/e) (1.6) 

Equation (1.4) is now changed into 

d S ~ ( x ) = � 8 9  dW~( t , x )  (1.7) 

with 

S;(x)  = ~ ( x )  = o(x/~) 

as initial condition. A~ = - V * V ~  is the usual lattice Laplacian, i.e., 

J ~ f ( x )  = e -2 ( f (x  + a) - 2f(x) + f ( x  - ~1) 

VEf(x ) = ,~- i ( f (x  + a) - - f ( x ) )  

V* f ( x )  = e - l ( f ( x  - e) - f ( x ) )  

for some scalar function f ( x ) ,  x ~ R 

we(t, x) = ~w(t/~ 2, x/~) (1.8) 

The stochastic differential equation (1.7) is the starting point of our 
discussion. If J = 0 ,  then this process has a family of local equilibrium 
distributions. They are the Gibbs stat6s/~.~ with energy function 

H~.~(S) = ~ V ( S ( x ) ) -  2~(x) S(x)  (1.9) 
x ~ a Z  

where 2(.)  is a smooth profile. (The superscript e indicates that the 
function has been made into a step function of size e on R; this will be 
explained more precisely in the next section.) It was shown in ref. 5 that the 
time-evolved expectations can be calculated in an asymptotic sense by 
means of time-dependent measures /~.,~. The stationary measures for the 
case where J r  are not known, but the leading term �89 V' dominates the 
external field because of their different scaling. (8'9'13) We will show that, 
despite the fact that the /~,~ are no longer a family of local equilibrium 
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measures, macroscopic expectations are still calculable using the #~..~ with a 
time-dependent profile 2 = 2(t, x). 

Assume that the initial configuration a ~ approaches some smooth 
function Po-The hydrodynamic equation that will be derived from (1.7) for 
the density field S~(x) in the limit e $ 0 has the form 

3,p(t, x) = a~[�89 x)) axp(t, x) + B(p(t, x))] 

O(0, .)= Oo(') 
(1.10) 

It is a nonlinear diffusion equation. The assumptions on V and J will 
guarantee that D is a strictly positive and bounded function on R, and that 
B has a bounded derivative. Both D and B will be defined in (2.21). tf V is 
a quadratic potential, then D(.)  is a (diffusion) constant. If J = 0 ,  then 
B(.) = 0 and the equation reduces to the one obtained in ref. 5. If J is 
linear, then B(p)~p.  

Our treatment of system (1.7) extends also to vector models on Z d. 
We briefly indicate how to generalize (1.4). At every site x ~ Z  J there 
is a vector-valued spin, S ( x ) e R  ~. The infinite configuration is S =  
{S(x), x~  zd}, with corresponding free energy H(S), For example, 

~I(S) = Z v(s(x)) (1.11) 

where V : R n ~ R  is strictly convex. To each bond {x ,y}  of nearest 
neighbors x, y e Z J we associate a vector current Jx). = - Jyx  e R n which 
is a local function of the configuration S, and a standard Wiener 
(vector)process W x y = - W y x e R  ~. Again, the evolution is given by the 
continuity equation [as in (1.4)] 

dSx + Z [aT,(x--. y) + ~s(s) dt] = 0 
]y  x] = 1 

where 

1 ( 3H 
d~,(x -. y)= cxy dWx~ +~ c.c*~y a-5~) 

Cxy is a symmetric n x n matrix. 

(1.t2) 

6~@y)) (1.13) 

This generalization allows us to incorporate some stochastic pertur- 
bations- of Hamiltonian systems. Consider, for example, the case d =  1, 
n = 2. In that case we have two real coordinates, the momentum p(x) and 
the position r(x), at each site x ~ Z .  We repeat the same discussion as 
above for the vector S(x)= (p(x), r(x)). Instead of (1.1) we take 

H(S) = ~ pZ(x)/2 + V(r(x)) (1.14) 
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where V is a real-valued symmetric convex function. For the (vector) 
current we choose 

J(S)(x)) = ( -  V'(r(x)), - p ( x  + 1)) (1.15) 

The continuity equation (1.4) can be written down explicitly. Let p~(x) and 
r~(x) denote the rescaled momentum and density, respectively [-see (1.6)]. 
The evolution is given by a coupled system of stochastic equations: 

dp~(x) = -V~* V'(r~(x)) dt + 5 ~ p;(x) dt + , f s  V~* dW~(t, x) 

dr~(x) = V~ p~(x) dt + ~ A~ V'(r~(x) ) dt + xf~ V* dlTV~(t, x) 

(1.16) 

with initial conditions p6 and r6. We used 

e and ~ are arbitrary positive numbers. W~(t, x) and ~ ( t ,  x) are indepen- 
dent Wiener processes for each x e eZ. 

This model represents a stochastically perturbed anharmonic system. 
Indeed, consider the Hamiltonian 

E ( p , q ) = ~ p Z ( x ) / 2 + V ( q ( x ) - q ( x  - 1)) (1.17) 

where p and q are the canonical coordinates. Introducing r (x )=  
q(x + 1) -q (x ) ,  we obtain the Hamilton equations 

dpt(x)= - [ V ' ( r t ( x - 1 ) ) -  V'(r,(x))] dt 
(1.18) 

dr,(x)= [-p,(x + 1 ) -  p,(x)] dt 

After a (hyperbolic!) rescaling of these equations, t ~ t / e  and x ~ x / e ,  
we obtain (1.16) with c~=fl=0,  where now p~(x)=p,/~(x/e) and 
r~(x)=rt/~(x/e). The structure of the additional terms in (1.16) (damping 
and noise) is determined by the requirement of reversibility. In particular, 
the Gibbs states with energy E(p, r) = Z Pz(x)/2 + V(r(x)) are stationary. 
Moreover, it is easy to check that p and r are conserved quantities of 
(1.18). The stochastic term is responsible for the breaking of conservation 
of energy. 

In this way we established a connection between the stochastically 
perturbed anharmonic system and a vector-valued Ginzburg-Landau 
model in an external field. 
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The local equilibrium states of this problem are given by the energy 
function, 

HH.(p, r) = Z p2(x)/2 + V(r(x)) - ,iS(X) p(x) - U(x) r(x) (1.19) 

with 7=(x) and 2~(x) defined as in (2.11). Of course, the stochastic pertur- 
bation destroys the Hamiltonian structure. Nevertheless, (1.16) still yields 
some physical information. After taking the hydrodynamic limit we obtain 
the (macroscopic) equations for the momentum field H and the density 
field p, which are of the following form: 

0~ 2 O,H(t, x)= D(p) 8xp(t, x )+~  8xxH(t, x) 

8,p(t, x) = 8xH(t, x) +~ Ox(D(p) Oxp(t, x)) 

(1.20) 

with initial conditions H(0, x)=Ho(x ) and p(0, x)=po(X). D(p) is the 
same as in (1,10). 

Observe that Eqs. (1.20) reduce to a nonlinear wave equation, 

~2.p(t, x) = Ox(D(p) axp(t, x)) (1.21) 

by formally letting :~,/3 go to zero. 
In the next two sections we repeat in a more precise way the main 

points of this introduction. The other sections are devoted to the proof of 
the results in the simplest case (as far as the notation is considered); a more 
complete description of the contents of this paper is presented at the end of 
Section 3. 

2. G I N Z B U R G - L A N D A U  M O D E L S  W I T H  E X T E R N A L  FIELD. 
M A I N  R E S U L T  

We wish to formulate the problem of deriving the hydrodynamic 
equations in terms of a family of Markov processes, {S~, t~> 0, e > 0}. It is 
convenient to embed the configuration space for each e > 0 into a space of 
functions on R. 

We define, therefore, 
2__ L e - -  ~'~ L2(R, Or(X) dx ) (2.  t )  

r > 0  

as the real Hilbert space of locally integrable functions f :  R -~ R with scalar 
product 

( f ,  g ) r  = f 0r(X) f (x)  g(x) dx (2.2) d 
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and norm 

]f[2 =_ f O,(x) fZ(x) dx (2.3) 

The weight function Or is defined in detail in ref. 5, but we can think of it as 
Or(x)=exp(-rlx]).  If [an-a l r - -+0,  Vr>0,  then a ~ + a  in the strong 
topology of L 2. The weak topology of L 2 is given by a fundamental system 
of the neighborhoods of 0 e Le 2, namely, 

u~(O~ ..... 0k)= { ~ L ~ ;  IO,(G)I < <  vi: 1,..., k} (2.4) 

with ~ > 0 ,  k e N  o, and ~bie Le 2.. Note that 

L2* = U L2( R, 0_r(x) dx) (2.5) 
r ; > 0  

and, i f ~ e L  2,~be 2. L e , then 

q3(a) = f (~(x) a(x) dx (2.6) 

Le 2 is a reflexive space and its balls, 

B({br}) = { a e L 2 ;  ]alr<<.b, forallr>O} (2.7) 

where {br}r>o are positive numbers, are weakly compact. For  X c  L 2, we 
define 

Cs(X) and Cw(X) (2.8) 

respectively as the spaces of strongly and weakly continuous and bounded 
maps of X into R. If X is a convex set, we define D,(X) as the space of 
functional differentiable functions f on X, i.e. if a, # a X, and 6 = a - #, then 

- f(ff) = fj  f 6(x) Df(x, e + qa) dx dq (2.9) f (a)  

where Df: X---+ L 2. is strongly continuous. The space of weakly differen- 
tiable 2 ~ L~ with derivative belonging to Le 2 will be denoted by He ~. 

The embedding of the configuration spaces into L 2 goes as follows. 
Define for e > 0 the intervals 

C~(x) = [ g ( x -  1/2), g(x + 1/2)), x ~ Z (2.10) 

For y E R, let y~ denote the unique integer x ~ Z for which y e C~(x): y~ = x. 
For  example, (ex)~=x for all x e Z .  If both Yl, y2eC~(x) for the same 
x e Z, then obviously 

y{ = y~2= x (2.1l) 
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Define f2~ as the space of all functions f e L  2, which are constant on the 
intervals C~(x), x E Z. Given a function f.~ L2~, we define the step function 

f~=I~f  en~: 

I~f(Y)=e-~ fc f(z)dz (2.12) 
e(y~) 

This implies that g2~= I~L~. On the other hand, given a function a on Z, 
we define the step function o -~ on R by taking 

a~(y)=~(y ~) (2.13) 

It is clear that these definitions imply that, if a~ e f2~, then 

(~(a ~) = f (~(x) aS(x) = e ~ (b~(~x) a(x) (2.14) 
x ~ Z  

for a test function ~. 
The microscopic dynamics is determined by (1.7). V: R-~ R is a convex 

function and J: R ~ R is a continuously differentiable function such that 

0 < C 1 ~ g " ( x )  ~ c 2 (2.15) 

with Cl, c2 absolute constants and V'", J' ,  and J" are bounded. 
Since multiplying V by a constant does not change the problem, we 

may and do assume that c1= 1 +c~, c2= 1 - e  with a s ( 0 ,  1). 
The conditions immediately imply (see ref. 5 for a more detailed dis- 

cussion) that there is a solution St = St(., a) to (t.4) with initial condition 
So= a e f 2 = g 2 ~ .  In fact, the SDE (1.4) gives rise to a Markov process on 
(2. The process S~ e f2, is defined by 

S~t(y)=&/~2(y~) forall  yeR,  t>~O (2.16) 

The initial value is S; = ~r~e f2,. The associated Markov semigroup pt  on 
Cs(g2~.) is defined as 

P'~g(a)=Eo[g(S~)I=E[g(S~)I SO=a] for gE C~(f2~) (2.17) 

E l .  [ S ~ =  o]  = E~[ - ]  is the expectation with respect to the process started 
from 

s ;  = ~ e no  (2 .1 , )  
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The limiting evolution equation was introduced in (1.10). Define for 
2 E R  

q;.(dy) = Zs 1 exp[ - V(y)  + 2y] dy 

Zj. = f exp[ - V(y)  + ;~y] dy 

F().) = log Z~. (2.19) 

A().) = - f  J (y )  q~.Cdy) 

Consider the equations, 

p(o, x)  = po(X) 

p(t, x) = F'(2(t,  x)) (2.20) 

F"(2(t,  x))  Ot).(t, _ 1 42 x) - ~O xx2(t, x)  + 0xA(2(t, x)) 

Equation (1.10) can be recovered from this by noticing that F '  is strictly 
increasing (see Section 4, proof of Lemma 4). Hence, if p =F ' (2 ) ,  then 

D(p) = 1/F"(2) and B(p) =A()0  (2.21) 

are well defined for all p E R. The inverse function of F '  will be denoted 
by Q: 

). = Q(p) (2.22) 

Notice that if G denotes the convex conjugate (Legendre transform) of F, 
i.e., G(p) = sup~. [p2 - F(2)],  then Q = G'. 

Equations (1.10) and (2.20) are uniquely solved in the weak sense (see 
Section 4, Lemma 4): 

T h e o r e m  1. If ~ converges weakly in L~ to some Po ~ Hi  as ~ ~ 0, 
then ~b(S~) converges in probability to fk(p(t, .)) for each t > 0  and 

L~ , where p(t, .) is the uniquely defined weak solution to the 
limiting equation (1.10). 

Idea of the proof. We will first prove the theorem in the case of 
random initial data (Section 7). We assume that the initial configuration a = 
on eZ is distributed by a product measure p~.,~: 

#;..,(da)= I ]  q;~(~)(da(x)) (2.23) 
x ~ Z  

where 2 ( . ) e  H~ is a given profile function for the chemical potential and 
).~ = L2. 
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Using the embedding (2.13) and the definition (2.19), this is clearly 
equivalent with saying that the initial configuration a on Z is distributed 
by a product measure 

In particular, 

1-1 e x p [ -  V(a(x) + U(sx) a(x)] 
x ~ Z  

f a(x) #~,~(da) = F'(U(x)) (2.24) 

where F(-) was defined in (2.19). Moreover, using the embedding (2.12) 
and (2.13), we can define #;..~ on the Borel field of L 2, with #a~(f2~)= 1. The 
following remarks motivate the role of p;..~ in the derivation of the limiting 
equation. 

Let ~ e CgJ(Rk), ~ie C~(R) for i: 1,..., k, k cNo, and define 

f(a) = ~(~bl(a),..., ~bk(a)) (2.25) 

If G, is the generator of the semigroup P'~ [see Eq. (2.17)], then, after an 
integration by parts, (5'12) 

f G,f(a) #;.,,(da) 

= - f f  [�89 a) dx#~.~(da) (2.26) 

with functional derivative 

k 

Df(x, a) = ~ ~?iqJ((~,(a) ..... Ok(a)) (J,(x) (2.27) 
i = 1  

Furthermore, by the law of large numbers (to be discussed in Section 6) 

and 

lim ~ f(a) #x.~(da)= f(Po) 
s,LO o 

lim f G~f(a) #a,~(da) 
e$O 

= - f  [12'(x) + A()4x))] VDf(x, F'(2)) dx 

d 
= d-Tf(P(t, ")),=0 (2.28) 
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if p solves the limiting equation (1.10) and P0 = F'()0. This suggests that we 
can follow the resolvent method (Section 7) as outlined in ref. 12 to get an 
expression similar to (2.28) for positive times. In this approach we extend 
(2.28) to functions of the type 

fz,~(a) = e ~tp~ go(a) dt, z > O, a ~ g2~ 
(2.29) 

g~(~) = ~(o), ~, ~'~ L~* 

Since the balls of L~ are weakly compact, the Stone-Weierstrass theorem 
allows us to extend the law of large numbers (2.28) from functions of type 
(2.25) to weakly continuous functions. Therefore we have to show that f 
and V D f  are weakly continuous functions of the initial configuration a. 
Since everything depends on the scaling parameter, this continuity should 
be uniform in e. The dependence on the initial configuration can be 
expressed via the functional derivative as defined in (2.27). The variation of 
fz,~ is given by 

fo Df~,~(x, a) = e-~t DP; g~(x, ~) dt 

1 
where P~.b is the fundamental solution to 

O~u~ = V*(b(t, x) u,) + �89 x) u~) 
(2.31) 

a(t, x)  = V"(S~(x)), b(t, x)  = J'(S~(x)) 

with initial condition 

pa,b(s, s; x, y) = 1/e if x ~ = y~ 
f 

= 0 else. (2.32) 

(2.31) is the first variational system of (1.7). The crucial step is now of 
course taking the limit e+0 in (2.29): this is the problem of smooth depen- 
dence of solutions to the SDE (1.7) on initial data. To pass to the limiting 
equation, various compactness properties of these families of functions 
({f~,~}, {V~Dfz,~}, {SP~go(a)p~..~(a)})will  have to be investigated. To 
establish the weakly continuous dependence of solutions to our dynamics 
on the initial configuration we can concentrate on the regularity properties 
of the fundamental solution Pa,b as it appears in (2.30). In Section 5 we will 
show that the study ofpa,b can be reduced to that of Pa,b=o and the method 
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of singular integrals (as explained in refs. 5 and 14) will be applied. The 
singularity caused by V*(bu,) can be handled by means of an L 4 estimate 
(see Section 4, Lemma 3). In view of (2.30), the basic object of our studies 
is an integral operator Pa,b defined for measurable h: [0, oo)• R ~ R and 
z > 0  [see also (5.14)]: 

f Pa,bh(s,x)= e =('-') p,,b(s,x;t,  y)h(t ,  y ) d y d t  

In particular, to prove that V~ D f  is weakly continuous, we have to show 
that A~Pa, b is a uniformly (in e) bounded map of Lq([-0, 00) • R) into itself 
for some q > 2. This is the most difficult step of the proof. The case b = 0 
(i.e., for P~) was solved in ref. 5. On the other hand, 

Pa,bh(s, x) = Pah(s, x) + Pab( ., .  ) V,P,.bh(s, x) (5.15) 

where b is a multiplication operator, is a standard perturbative identity. In 
Section 4 we extend the energy inequality to an L 4 norm. Therefore, V,P,.b 
maps L4([0, oo) • R) into itself, whence the desired bound of A, Pa.b follows 
by (5.15) and interpolation (see ref. 5, the Appendix of ref. 14, and refs. 15 
and 16). These bounds are sufficient to derive that the resolvent f_~ 
converges to that of the limiting equation, whence 

P 
lira J P'~ g dl~,~ = g(p,) 
elO 

by equicontinuity of ~ P'~ g d/~,~ as a function of time. The case of deter- 
ministic initial data, as stated in Theorem 1, reduces to this average via the 
continuous dependence of solutions on initial data. 

Remarks. There are several ways to generalize Theorem 1. We may 
add a quadratic nearest neighbor interaction to the energy function H(S) 
in (1.11): 

H(S)=~ V(S(x))+ y ~ [S(x)-  S(y)] 2 (2.33) 
x <x y  ) 

The local equilibrium measures/~,~ are no longer product measures in this 
case. The law of large numbers is still verified, however, if y ~> 0 by the 
convexity of the self-potential V (see also refs. 5 and 17). 

The condition that the dimension d =  1 can be easily removed (see 
ref. 5). 

Vector-valued models (in the notation of section 1: n > 1) can be 
investigated without any additional difficulty, but we have to assume that 
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the matrix of second derivatives of the nonquadratic part of the energy V is 
positive definite and close to a constant. 

The external field may depend on several neighboring coordinates of 
the configuration. 

We can also add a reaction term R(S~(x))dt to the right-hand side of 
Eq. (1.7). Accordingly, the term ~ R(y) dq;.(,.x~(dy) has to be added on the 
right-hand side of the limiting equation (1.10). 

It is possible to introduce spatially inhomogeneous or random conduc- 
tivities. There is no additional difficulty if the inhomogenity is macroscopic. 
The problem of microscopic i.i.d, conductivities is not understood. 

3. A N H A R M O N I C  S Y S T E M S  IN NOISE 

The configurations of this model are interpreted as couples of elements 
of Q~, i.e., step functions p~ and r ~ of step size e in L 2. The evolution law is 
given in (1.16) by two coupled SDEs. It determines the stochastic processes 
(p~) and (r~) with initial conditions p ;  and r;.  

T h e o r e m  2. Suppose that ~(p~)-+ ~(H0) and ~b(r;) -+ ~b(p0) as ~ ~ 0 
2* for each ~)eL e , where H o and poeH~; then ~b(p~)-+~b(H,) and 

~b(r, ~) --* ~b(p,) as ~ ,L 0 in probability for each ~b, ~ ' e  L~ 2., where H, and p, are 
determined as weak solutions to (1.20). 

This result is a particular case of an extension of Theorem 1 to vector- 
valued spins; cf. (1.14)-(1.15). Since the additional difficulties are only in 
the notation, we restrict ourselves here to the proof of Theorem 1. 

Romarks. The additional non-Hamiltonian terms of (1.16) are very 
arbitrary: we could replace A~p(x) and A~V'(r(x)) by A~V'l(p(x)) and 
A~ V'2(r(x)) provided that VI and V 2 satisfy (2.15). In this case, the coef- 
ficients of the limiting equation also depend on VI and V2, but  they do not 
depend on ~ or ft. This instability indicates that stochastic perturbations 
modify even the average behavior of Hamiltonian dynamics in a substantial 
way. 

The more familiar case of fl = 0 is beyond the scope of our methods. 
The instability mentioned above seems to be less radical in this situation. 

We now give the contents of the remaining sections. In Section 4 the a 
priori bounds are given for the solutions of the backward equation 
associated to (1.7). Furthermore, the solution of the limiting equation 
(1.10) is investigated. Both problems rely on the derivation of energy 
inequalities. The a priori bounds are used in Section 5 to establish the 
relative compactness, in a suitably chosen topology, of families of functions 
as they appear in the resolvent equation to (2.29). In particular, the L~ 
estimate will reduce this problem to the case where b(x, t )=0 [see (2.31)] 
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and the method of singular integrals can be used. (s'14) Section 6 discusses 
the applications of the law of large numbers. Here we find the motivation 
for the choice of the topology in Section 5. In Section 7 the resolvent 
method is used to solve the question in the case of random initial data. 
Section 8 contains the proof of the main theorem. (Theorem 1). 

4, THE E N E R G Y  I N E Q U A L I T I E S  

We want to exploit the nice parabolic structure of the microscopic 
dynamics to develop L 2 and L4 4 estimates. They will give a precise meaning 
to the statement that the dependence of the evolution on the initial data is 
smooth. 

Let h e ~ ,  and IreL ~< 1, z0>~0. Suppose that a, b~f2, ,  with, for all 
x~R,  t>~O, 

]a(t, x ) -  1[ ~<cr 1 (4.1) 

and 

[b(t, x)[ ~< 13 (4.2) 

where c~ and 13 are constants. 

Lemma 1. Let 

La,bV=-ZoV-�89 for v :R-*R  (4.3) 

There exists a constant C = C(c~) and a constant K = K(c~, t3) such that 

2(v, L. ,bv+V~h)r+2z o [v[2+~(1-c~) V*v r 2 

<<. (2Cr2 + K) Ivt2 + C ]hl2r (4.4) 

Proof. We apply an integration by parts, ~ f V ,  g=fo(V* f  ) g, and 
use the identity 

V*(VOr) = (V'v)  Or + (V*0r) V(.-- ~) 

to obtain that 

2(v, V~(h - laV*v + bv) )r 

= 2(V~v, (h- �89 

+ 2 f g--l[Or(x--g)--Or(X)] v (x -e ) (h - �89  (4.5) 
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We now proceed as in ref. 5 and use the basic properties of the weight 
function 0r: 

IOr(X -- e) -- Or(X)l <~ Irel el<O~/2(x -- ~) O~/2(x ) (4.6) 

[ Or/2(x) ] 2 = O~(x) (4.7) 

the Schwarz inequality, and the fact that Iret <~ 1. 

I . e m m a  2. Suppose that us(x),  O~s<~ T<~ 0% satisfies 

- C3sU,, = -ZoU s + hs + �89 + bV~u~ (4.8) 

with 2Zo > 2Cr2+ K (the constants as in Lemma 1). Then there is a z > 0 
such that 

IV~uol2 + cffl - ~) e-~SlA~Usl2ds r r 

<<- e - ~ r  lV~uTI2 + C Ihsl 2 e-~" (4.9) 

and 

r - r  
IUoI2  --zT 2 ~ <.G e (lurl,. + lV~url2) + 2C ]hs]~ e ~S ds 

ao 
{4.10) 

ProoL  Let v , = V ~ u , .  Notice that -~3, Ivsl 2 is the lhs of (4.4). This 
implies the first inequality (4.9) via a straightforward manipulation. 

On the other hand, we can multiply the backward equation (4.8) with 
2u, Or and get 

-~3s lu~[2+2Zo[Us[2r=2(us ,  h s ) r + ( u s ,  a A ~ u s ) r + 2 ( u s ,  bV~us)r  (4.11) 

whence (4.10) follows by (4.9) and the Schwarz inequality. 
In the following lemma we are going to derive a similar L 4 estimate. 

We use the notation 

IflPr,p= f Or (X) I f ( x ) l  p dx  (4.12) 

Lemma 3. Suppose that us, 0~<s<oe,  satisfies the backward 
equation (4.8) with z o > Z(e, b, r) I-defined in (4.26)]. Then there is a z > 0 
and a constant C ' =  C'(c0 such that 

fS ~ 
e = V~us44<<,C ' e -z '  h, a4dt  (4.13) 

822/53/5-6-12 
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Proof. We start again from the backward equation (4.8), with 
V s ----- V e Us : 

-Os Iv,I 4 :  -4Zo Iv,14+4(v3,V~(hs-laV*v,+bvs))~ (4.14) 

In order to integrate by parts the last term in this equation, we note that 

g~(/)30r) = (Veers) Fs,O~ ql-V~OrV3s( " --~) (4. t5) 

where 

F~.~(x)=vZ(x-e)+v,(X)Vs(X-~)+v~(x)>>.O (4.16) 

After the integration by parts we use the following bounds: 

(i) 

f v*0Xx) V~s(X- 8) hx(x) dx 

<~ lrl e Irelelr~l/4 f v2( x -- ~.) hs(x) Or/2(X -- ~) Or/4(X ) Or/4(X 8) (4.17) 

~< 4 Irl IV, lr34 Ihsl~.4 (by the H61der inequality) (4.18) 

~< 3 Irl 4/3 los 44 + Ih,lr44 (via the concavity of the log) (4.19) 

(ii) [see (i)] 

f , 3 fl(3 + r4) [Vsl 4 (4.20) V~ Orv,(x- ~) bvs(X) <~ r,4 
d 

(iii) 

f V*O 3, [ -  a , ~VstX-~) ~V~ Vs(X)] 
1-~ I27_~2 1%*VsL27 
----~--e Irel f Or/2(X--~) Or/2(x)I)2(X-C')  V2s(X--~ , )n t - - ' - ' f f~J  

~< 243(1 :~) F2 4 1 f -- [Vslr.4 + 17 (1 -- ~) Or(X) IV~Vs(X)I2V~(X--g) 

~< 243(1--~)r  2 Iv, 44 + ~(1- -~) I  Or(x)IV, v,(x)[2F,,~(x) (4.21) 
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(iv) 

(v) 

(vi) 

i f  Or(V*vs) F~,shs 

~ < 2 ( 1 3 - ) f 0 r F ~ , , h : + ~ - ~ f 0 , F ~ , s l V ~ * v , '  2 

3 15 4 1 - - 0 ~  f" 
~< 4 Vs 44q 4(1--0~) 2 Ih'lr'a+-g-J O~F~'" IV*v'12 

f 

f Or(VeVs) F~,~bv~ 

3fl2 2 1 -  c~ ;0  F 
~< 2(~7c~) f Orvsre ,s+-"~ j . . . .  ]Vevsl  2 

21132 2 I - c~ .; 0 F 
-< 2 ~ - ~ )  f 0,~sF~,, + - - g -  J ..... Iv~,l 2 

Combining (i)-(vi) with (4.16), we obtain 

- 0 ,  " 4 [Vs[r,4 + h, 44 [V,Ir,4 <~ (__4Zo + 4Z ) 4 C' 

where 

3 
z=z (~ ,  ~, r ) = ~ +  (3 + r~)/~ ~ 

and 

21132 

2(1 - c  0 

15 
C ' =  C'(~) - ----------~(1 - ) 

243 
- -  +3 Ir14/3 + T  ( 1 - ~ ) r 2  

+4 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

This completes the proof. 
The a priori bounds above will be used to conclude the weak 

continuity offz,~ and V~ Dfz,~ via the following result. 

I . emma  (Lemma 6 in ref. 5). Let B denote an arbitrary ball in L~. 
For each/3 > 0, r > 0, and K <  o% there exists a weak neighborhood of 0 in 
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L2, g~(~l,..., ~n), such that I~b(6)[ </~ whenever ~b ss [~b]-r+ ]V~bl- ~ < K  
and 6 e B ~  U~(~,..., 0,). 

Proof. See Lemma 6 in ref. 5. 

The energy inequalities of Lemma 2 are the discretized versions of the 
more familiar bounds for the limiting equation (1.10) (see Lemma 4 below). 
We use the notation of (2.20)-(2.22). 

I . emma  4. Given po~H~, there exists a continuous trajectory 
p(t, �9 ) in L~, t >~ 0, such that 

and 

I ~(x) p(t, x) dx 

p(0,-)  = Po 

(4.27) 

for each twice differentiable ~b: R ~ R with compact support. Moreover, 
Q(p( t , . )=Z ,~H~ for all t>~0, and [2't[] is integrable on bounded time 
intervals. There is no other solution with such properties. 

Proof. Suppose p, is a classical solution to (1.10). One can construct 
these via a Galerkin approximation. Then, 

8, tP,l~ = - f  8,(p,Or) D(p,) p', + 2 f p,(x) Or(X) (?xB(p,(x)) (4.28) 

We can obtain some energy inequalities for (4.28) in much the same 
way as we did for the discrete case (4.8). By the definitions (2.21), 
D(p,) = 1/F"(2,) >/(1 - c~) 1/2 and B'(p,(x)) = A'(2,)D(p,) <~ c(1 - c~) -1, 
where c is a constant (since J '  is bounded). Here we used Proposition 1 of 
ref. 5: F '  is continuously differentiable and 1 -  c~ ~< F"(v)<~ ( 1 -  cr -1/2 for 
all v e R. 

Therefore, with r > 0, 

~, Ip,l~ ~ - (1  _ ~),/2 lp'l~ + (r + 2c)(1 _ ~ ) - i  tPlr IP'lr (4.29) 

and 

Ip,l~ +---j--  f e ~('- s~ IPsl~ ds ~ e" IPoIr z (4.30) 
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where g = (r + 2c)2/2(1 -~)3 .  Starting from (2.20), it is easy to verify that a 
similar energy inequality is satisfied by 22 

12,t~ +---2---1--c~ f eC(t_ , i ]2, lr ds <~ eC~ 2 (4.31) 

The existence of the solution in Lemma 4 now follows from a standard 
argument. We first take Po and 2; in bounded domains of L~. Conditions 
(4.30) and (4.31) imply compactness properties of the associated classical 
solutions p,, i.e., Pt remains in a strongly compact set of L 2 on finite time 
intervals (by the F. Riesz criterion) because ]Pt]~ and I,r a r e  bounded. 
(4.31) gives a uniform bound for the time integral of J(d/dt)P,[~, whence p, 
is an equicontinuous family in L~. Therefore, the Arzela-Ascoli theorem 
implies the existence of a continuous trajectory p, in L~ satisfying (4.27) for 
P0, 2; e L 2. Moreover, (4.30) and (4.31) imply that p, ~ He ~ for all t >/0 and 
J'6 Io;I,2. ds and .[6 I)/t~ ds are bounded [2 = Q(p)]. 

To prove the uniqueness of such a solution, we introduce the current of 
p. Let 

1 B(/3s)} ds o~,(x) = fo {~E2;(x)-~;(x)] + B(ps)- 
if p, and/3~ are two solutions with P0 =/3o. oJ, is differentiable in the weak 
sense: for smooth ~b, ~ b'co, dx = -~ 06, dx with 6, = p,-/3~. We thus have 

d ]O~]r2 = 0,~O,{(2',--2'~)+2[B(p,)--B(/3,)]} dx 
dt 

~< [ k - ( 1  _ ~)1/2] I,~,1~ + C(r,  ~, c)Ico,l~ 16,1~ 

~< K Ic~,lr 2 (4.32) 

where k can be chosen small enough so that k -  (1 - ~)~/2 < 0 and K <  
depends on k, ~, r, and c ( = t h e  constant bounding J'). The conclusion is 
therefore that ~o, = 0 = 6, a.s., hence uniqueness. 

5. THE S M O O T H  D E P E N D E N C E  ON THE INITIAL D A T A  

In the present section we study the behavior of some of the key players 
as they appear in the resolvent approach (to be presented in the next 
section). 

Let fz.~(cr) = ~ e-z'P~ g(a) dt, for some z > 0 and cre L~ 2 equipped with 
the weak topology. We take g to be of the form 

g(o-) = 4 ' (~, (~)  ..... ~k(~)),  

with 0 smooth, ~b 1, ~;~L~* (5.1) 
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~(a)=~O(x)a(x)dx and we write P'~g(a)=E~[g(S~)]= g~(a) [see 
(2.17)]. 

Lamina  5. The family of functions {f~,~(a), 0 < e < 1 } is relatively 
compact in C([z~, z2] x B) with the uniform topology, where B--B({b,,}) 
is a ball in L 2, and 0 < zl < z2 < oo, 

Proof. Consider two initial data a and # e L 2. By definition, 

A,z(a)-A,z(e)= 6(x)Df~,:(x,#+q6)dxdq 

where 

(5.2) 

Of(x, ~)=G[~o(X)]  (5,3) 

and 

u~(x) = ;~ f e ~~ r)Pa,b(S , X; t, y ) D g ( y ,  S:)  dy dt (5.4) 

where Pa,b was defined in (2.32). We apply the bounds (4.9) and (4.10) with 
T= oo, h,(x)= Dg(x, S~), to obtain the weak equicontinuity off~,~(a) as a 
function of the initial configuration a. The uniform boundedness follows 
from 

IL,~(a)[ ~< [01 ~/z (5.5) 

and the equicontinuity in the parameter z is immediately obtained from 

lazf~,~(a)l ~< I~l ~/z2 (5.6) 

This completes the proof of Lemma 5. 
The next lemma discusses properties of the functions 

V~Df~,~: LaeX(O, oo)~ L~* 

L e m m a  6. The family of functions {V~Dfz,~(., a ) , 0 < a <  1} is 
relatively compact in C([z~, z2] x B) equipped with the uniform topology, 
where B=B({br}) is a ball in L~, and 0 < Z l < Z 2 <  oo. 

Proof. The uniform boundedness is a consequence from (4.9) by 
taking T =  ~ ,  h,(x) = Dg(x, S~) and 

us(x) = e ~~ -~ x; t, y) Dg(y, S~) dy dt 
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[see (4.8) above].  For the weak equicontinuity we consider two initial data 
a and ~ with the corresponding quantities a and ~i, b and 5 [defined in 
(2.32)], h and k u, and ~s [defined in (5.4)]. The equation for the 
difference 6u,  = u, - (t s reads 

-~3 , 6Us = - Z o  3Us + h , -  h ,  + �89 - Cts) d~u,  

+ (b,  - b~) V~u~. + �89 s V~ 5Us + 6,  V~ 6u,  (5.7) 

Taking together the second, third, and fourth terms in the rhs of this 
equation, we can use (4.9) to write (r < 0) 

where 

IV~uo - V, u01~ ~< k(I1 + 12 + 13) (5,8) 

-~ 2 dt I l = dt e - z t  tDg( ", S ~ ) -  D g ( . ,  St)]~ 

12 = d i e  ~ I(a~-~,)  A~u~[~ (5.9) 

fo 13= d t e  - ~  ] ( b , - ~ , ) V ~ u t l 2 d t  

and k is a constant. We will show that each of these quantities is small 
whenever a - # = 6  is "small" i n  the weak topology [see (2.4) and 
Lemma 6 in ref. 5. 

1. Let 

]Dg(.  , a ) - D g ( . ,  a)lr 
L r ( D g )  = Sup 

~,~ la--~l_r 

11 is bounded by 

< 0 ( 3  

where 

r o y  

I1 <~ L~(Dg)  J o  e -Z '  I S ~ -  g~i 2 dt 

;o f = L r ( D g )  (~(x) e ~' p~.~(O, x; t, y )  k ( t ,  y )  dy dt dx  

k(t,  y )  = 0 r (X)[S~(y)  -- X~(y)]  

~t(Y)  = [ V ' ( S ~ ( y ) )  - V ' (X~(y ) )  ] / [  S~(y)  - g~(y)] 

~ , ( y )  = [ J ( S ~ ( y ) )  - J ( S ~ ( y ) ) ] / [ S ~ ( y )  - g~(y)] 

(5.10) 
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There is a function v, such that - V ' v , =  (S~-g~)e  ~' (see Lemma 4 in 
ref. 5). Notice that 

~tUt = L~,~v t 

where the operator L,, b was defined in Lemma 1 (Section 4) with Zo =z.  
Hence (4.10) combined with the estimate of Lemma 4 in ref. 5 implies that 
~ Ik(t,.)lr dt is bounded. Therefore, (4.9) and (4.10) guarantee that 

fo~ f p~,~(O, x; t, y)k(t, y) dydt 

and its gradient are uniformly bounded. This is sufficient (see Lemma 6 in 
ref. 5) to control 11 in the inequality (5.10). 

2. A more subtle argument is required to prove that 12 is small. We 
write Or(x) = 02,(x) 0 ~(x) and apply the H61der inequality with exponents 
q/(q-  2) and q/2(q > 2). We get 

12 <~ e z t[J l ( t )] (q  2)/q[J2(t)]2/q 

with 

Jl= f Or,(y) lat(y)--?z~(y)[ 2q/~q 2) dy, J2 = lAeutl~',q 

(5.11) 

and r' = - r q / ( q -  2) > 0. Furthermore, 

J1 = f ~)(x) f p&j~(O, x; t, y)h(t ,  y )dy  dx (5.!2) 

where 

h(t, y)=O/(y)[V"(S~(y))-  V"(S~(y))]2q/(q-2)/[St(y)-S~(y)] (5.13) 

is uniformly bounded, since V" is bounded by assumption. We can now 
repeat the argument used in part 1 of the proof (replacing k by h) to find 
that J1 is "small" if 6 is. So it is sufficient to prove that the factor J2 is 
bounded. We define the integral operators (for z > 0) 

fs ; pa.bh(s,x)= e z(s-') p~,b(s,x;t,h)h(t, y)dydt  

It is clear that 

(5.14) 

Pa,bh(s, x) = Pah(s, x) + Pab(s, x) V~Pa, bh(s, x) (5.t5) 
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where Pa = Pa,b=o. Let Lq(R§ ) be the space of locally integrable h: R+ --, R 
with norm 

We know from Lemma 3 that V~Pa, o is a bounded map from L4(R+) into 
itself, while Lemma 2 gives an L~(R+) bound. We thus have a similar 
bound for each 2 ~< q ~< 4 by the Riesz-Thorin interpolation theorem (see 
ref. 15). On the other hand, Lemma 7 in ref. 5 provides an Lq(R+ ) estimate 
for the operator A~P~ for some q > 2. The identity (5.15) together with the 
boundedness of b shows that J2 is bounded. 

3. 13 can be treated in essentially the same way as 12. It is actually a 
little simpler because we only need the L4(R +) estimate (4.15) on V~P~,b 
and the boundedness of J". 

Lemma 7. The family of functions {#;.,~(P~g(~r))} is relatively 
compact in C((0, oc)). 

Proof. The boundedness is trivial. We show that {#;.~(P'~g(~))} is 
equicontinuous in the time parameter. For a E Q~, 

Pt~g(a)-P'~g(a)= G~P~g(a) dr 

= -  k~ ~ tx)-J(~(x))]Dg~(x,~)dx& (5.17) 

and 

Dg~(x, a)= E~ [ f  pa,b(O, x; r, y) Dg(y, S:) dy] 

We use (4.10) with T =  r to get the bound 

for all a iDg~12r 2 C r  2"c 2 <~ e (]Dglr + IV~Dg[~) (5.18) 

The Schwarz inequality completes the proof of the lemma. 

6. T H E  L A W  OF LARGE N U M B E R S  

The limiting equation (1.10) is deterministic. In general the crucial step 
where the fluctuations are eliminated is taken by the law of large numbers. 
This law permits us to investigate the "almost sure" behavior of physical 
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quantities which are random for each fixed value of the rescaling parameter 
5. The rescaling as carried out in (1.5)expresses the idea that many 
particles undergo a great number of processes (collisions) in a macroscopic 
time. In the limit as ~ $ 0 the evolution has become macroscopic and deter- 
ministic because we have been summing over such a large number of 
events. (2) A more precise formulation of this idea is the subject of this 
section. 

The measure #;..~ was introduced in (2.23). It is a product measure and 
therefore its behavior is easy to investigate as a ,[ 0. In fact, it is a simple 
application of Proposition 1 in ref. 5 to conclude: 

Lemma 8. 

lim f g(a) #~,~(da) = g(p) 
e$o 

(6.1) 

where p(x)=F' (2(x) )  if geCw(Qc~B, )  for every e > 0  with (B,) an 
increasing sequence of balls, i.e., #~,~(B,) 1" 1 as n 1" oo uniformly in e. 

Remark. We know from lemma 5 (via Ascoli's theorem) that we can 
select a subsequence G { 0 such that fz,~,(a)--* fz(a). In the same way (from 
Lemma 6) we know that V~Df .... converges to the derivative R'z of a 
function Rz. The convergence is uniform on compacts [Zl, z2] x Bm (as in 
Lemmas 5 and 6). 

Lemma 9. Let po(x)=F'(2(x)) .  

(a) 

lim f #a~o(da)f~,,,(a)=L(Po) 
n'~co 

(6.2) 

(b) 

lim I #;.~.(da)f [�89 J(a(x))] V~Df~ (x, ~)dx 
n ' ~ o o  , n 

= ~ E�89 + A04x))]  R'z(x, Po) & (6.3) 

(c) 

lim f #).,~(do-) P'~ g(~r) - P' g(p~) = 0 (6.4) 
e{O 
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Proof. (a) 

+ f Ua~o(do-)f~(a)-L(Po) (6.5) 

The first term is bounded, for every m e N, by 

Sup [fz,~.,(o) - f~(o)[ + 2 tt)l o~ #z~,(B~m)/Z (6.6) 
cr~Bm 

As a result of Lemma 8 and the remark following this lemma every term 
vanishes in the limit n T Go. 

(b) V~2 ~ converges strongly to 2'; on the other hand, 

f J(~(x)) V~ Dfz,~,(x, a) dx 

= f J(a(x))[V. Dfz,..(x, ~)-  R'(x, Po)] dx 

+ f J(G(x)) R;(x, Po) dx (6.7) 

For the first term we can apply the Schwarz inequality together with the 
argument of part (a) of this lemma. The second term converges trivially 
and gives the desired result (6.4), with R'A., P0) E L 2.. 

(c) Given Lemma 8, it is sufficient to prove that g~(a ) -  g~(6) is small 
whenever 6 = ~ - 6  is "small" (in the usual "weak" sense). But, 

g~(a)- g~(#)=f 6(x) f] Dg~(x, ff +fiq) dxdq (6.8) 

with 

Dg~;(x, #)= E~ [ f P~,b(O, x; t, y) Dg(y, S~) 1 

We can repeat the argument already applied in the proof of Lemma 7: it 
shows that ]Dg~(x, a)[~ 2 and tV~ Dg~(x, ~)l 2 are bounded. This is sufficient to 
complete the proof (see Lemma 6 in ref. 5). 
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7. THE RESOLVENT APPROACH 

We are now in a position to apply the resolvent method. The power of 
this method in the context of the derivation of the hydrodynamic limit was 
very well established in refs. 5, 12, 18, and 19. It extends to positive times 
the expected behavior for the macroscopic quantities which can be guessed 
from the form of the generator [see (2.26)]. An alternative approach (at 
least for finite volumes, or on the torus) was recently suggested in ref. 20. 

From the definition of the resolvent f~,~(o-) as it was introduced in 
(5.1), we obtain the (resolvent) equation 

(7.1) 

We can integrate this equation with the measure/~.~(da). Lemma 9 asserts 
that we can pass to a limiting resolvent equation along some subsequence 

S n :  

g ( F ' ( 2 ) )  = z f z ( F ' ( 2 ) )  - GJz(F ' (2) )  (7.2) 

for each )~ ~ H i and z > Zo, where z 0 depends on g only. The uniqueness of 
the resolvent equation and Lemma 4 imply that 

f~(Po) = e ~tg(F'(2t))  dt (7.3) 

where 2t was defined in (2.20). The uniqueness of the Laplace transform 
together with Ascoli's theorem [-which can be used via the result of 
Lemma 9(c)] are sufficient to conclude: 

Lemma 10. F o r a 1 1 2 e H  i, 

lira #~.~(pt g) = g(F'()~,))  
e J, 0 

where 2t is defined in (2.20). 

(7.4) 

8. PROOF OF T H E O R E M  1 

The previous section solved the problem in the case of random initial 
data. We now have to pass to a deterministic initial condition. 

By assumption, a ~ converges weakly in L 2 to Po ~ Hi- Given Po ~ H1 e~ 

we find 2 e H i via the relation 

)L(x) = Q ( p o ( x ) )  (8.t) 
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This al lows us to const ruct  the measures  #~.,~(da) on the initial  con- 
f igurat ions a e ~  [-as was shown in (2.23)].  Let Pt be the so lu t ion  to 
(4.27). Wi th  the funct ion g as in (5.1), 

I g~(Cry) - g(P,)l  

I . . . . . .  f <<, g , (a  ) -  g,(Po)[ + g , ( P o ) -  #;.,~(do-) g~(a) 

+ f #;,,~(da) g~(a) - g ( p , )  (8.2) 

2, Since r  *)-+ ~b(Po) for each ~b e L  e , the first term goes to zero by the 
a rgumen t  given in the p r o o f  of pa r t  (c) of L e m m a  9. The second term 
approaches  zero as g,L 0 as a direct  consequence of L e m m a  9(c). Final ly ,  
the th i rd  term was t rea ted  in L e m m a  10. The conclus ion of Theorem 1 now 
follows from a Chebyshev  inequali ty.  
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